If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(x^2-9)=93
We move all terms to the left:
3(x^2-9)-(93)=0
We multiply parentheses
3x^2-27-93=0
We add all the numbers together, and all the variables
3x^2-120=0
a = 3; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·3·(-120)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*3}=\frac{0-12\sqrt{10}}{6} =-\frac{12\sqrt{10}}{6} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*3}=\frac{0+12\sqrt{10}}{6} =\frac{12\sqrt{10}}{6} =2\sqrt{10} $
| 4d-6=-5d | | 1/3x+6-6=7-6 | | x=30*214/15 | | 3*3x=24 | | 10+3k=-7k | | 4x-3(x-2)=-5x-2(x-9) | | 9+3p=6p | | (4x-8)^2=6 | | 4.3-1.4(p+7=9.7 | | 9-5c=16 | | 11x-17=-50 | | 8/3n³n=3/2 | | 10x-7.4=-57.4 | | 9+13=m+21 | | 2k=18=9k-3 | | 75-13x=2x | | 19k-4k+3=93 | | 28.56+2x=40.82 | | •z=X+(Z+X) | | 40.82=28.56+2x | | 9x(x+1)=25+9x | | 2x-(6x+8)=3x-29 | | 3.72=x/2 | | 13d+3d=20 | | -3x+10x=x+4 | | 4a-35a=12a-8 | | 11u=5u+54 | | 3x+2x-17=25 | | 12y=-42 | | 12n+3=99 | | 7x-3x+13=3x+7 | | 1+3r-6r=4 |